Quantum computer programming

I was on a vendor call last week and they were discussing their recent technological advances in quantum computing. During the discussion they mentioned a number of ways to code for quantum computers. The currently most popular one is based on the QIS (Quantum Information Software) Kit.

I went looking for a principle of operations on quantum computers. Ssomething akin to the System 360 Principles of Operations Manual that explained how to code for an IBM 360 computer. But there was no such manual.

Instead there is a paper, on the Open Quantum Assembly Language (QASM) that describes the Quantum computational environment and coding language used in QIS Kit.

It appears that quantum computers can be considered a special computational co-proccesor engine, operated in parallel with normal digital computation. This co-processor happens to provide a quantum simulation.

QASM coding

One programs a quantum computer by creating a digital program which describes a quantum circuit that uses qubits and quantum registers to perform some algorithm on those circuits. The quantum circuit can be measured to provide a result  which more digital code can interpret and potentially use to create other quantum circuits in a sort of loop.

There are four phases during the processing of a QIS Kit quantum algorithm.

  1. QASM compilation which occurs solely on a digital computer. QASM source code describing the quantum circuit together with compile time parameters are translated into a quantum PLUS digital intermediate representation.
  2. Circuit generation, which also occurs on a digital computer with access to the quantum co-processor. The intermediate language compiled above is combined with other parameters (available from the quantum computer environment) and together these are translated into specific quantum building blocks (circuits) and some classical digital code needed and used during quantum circuit execution.
  3. Execution, which takes place solely on the quantum computer. The system takes as input, the collection of quantum circuits defined above and runtime control parameters,and transforms these using a high-level quantum computer controller into low-level, real time instructions for the quantum computer building the quantum circuits. These are then executed and the results of the quantum circuit(s) execution creates a result stream (measurements) that can be passed back to the digital program for further  processing
  4. Post-Processing, which takes place on a digital computer and uses the results from the quantum circuit(s) execution and other intermediate results and processes these to either generate follow-on quantum circuits or output ae final result for the quantum algorithm.

As qubit coherence only last for a short while, so results from one execution of a quantum circuit cannot be passed directly to another execution of quantum circuits.  Thus these results have to be passed through some digital computations before they can be used in subsequent quantum circuits. A qubit is a quantum bit.

Quantum circuits don’t offer any branching as such.

Quantum circuits

The only storage for QASM are classical (digital) registers (creg) and quantum registers (qreg) which are an array of bits and qubits respectively.

There are limited number of built-in quantum operations that can be performed on qregs and qubits. One described in the QASM paper noted above is the CNOT   operation, which flips a qubit, i.e., CNOT alb will flip a qubit in b, iff a corresponding qubit in a is on.

Quantum circuits are made up of one or more gate(s). Gates are invoked with a set of variable parameter names and quantum arguments (qargs). QASM gates can be construed as macros that are expanded at runtime. Gates are essentially lists of unitary quantum subroutines (other gate invocations), builtin quantum functions or barrier statements that are executed in sequence and operate on the input quantum argument (qargs) used in the gate invocation.

Opaque gates are quantum gates whose circuits (code) have yet to be defined. Opaque gates have a physical implementation may yet be possible but whose definition is undefined. Essentially these operate as place holders to be defined in a subsequent circuit execution or perhaps something the quantum circuit creates in real time depending on gate execution (not really sure how this would work).

In addition to builtin quantum operations,  there are other statements like the measure  or  reset statement. The reset statement sets a qubit or qreg qubits to 0. The measure statement copies the state of a qubit or qreg into a digital bit or creg (digital register).

There is one conditional command in QASM, the If statement. The if statement can compare a creg against an integer and if equal execute a quantum operation. There is one “decision”  creg, used as an integer.  By using IF statements one can essentially construct a case statement in normal coding logic to execute quantum (circuits) blocks.

Quantum logic within a gate can be optimized during the compilation phase so that they may not be executed (e.g., if the same operation occurs twice in a gate, normally the 2nd execution would be optimized out) unless a barrier statement is encountered which prevents optimization.

Quantum computer cloud

In 2016, IBM started offering quantum computers in its BlueMix cloud through the IBM Quantum (Q)  Experience. The IBM Q Experience currently allows researchers access to 5- and 16-qubit quantum computers.

There are three pools of quantum computers: 1 pool called IBMQX5, consists of 8 16-qubit computers and 2 pools of 5 5-qubit computers, IBMQX2 and IBMQX4. As I’m writing this, IBMQX5 and IBMQX2 are offline for maintenance but IBMQX4 is active.

Google has recently released the OpenFermion as open source, which is another software development kit for quantum computation (will review this in another post). Although Google also seems to have quantum computers and has provided researchers access to them, I couldn’t find much documentation on their quantum computers.

Two other companies are working on quantum computation: D-Wave Systems and Rigetti Computing. Rigetti has their Forest 1.0 quantum computing full stack programming and execution environment but I couldn’t easily find anything on D-Wave Systems programming environment.

Last month, IBM announced they have  constructed a 50-Qubit quantum computer prototype.

IBM has also released 20-Qubit quantum computers for customer use and plans to offer the new 50-Qubit computers to customers in the future.

Comments?

Picture Credit(s): Quantum Leap Supercomputer,  IBM What is Quantum Computing Website

QASM control flow, Open Quantum Assembly Language, by A. Cross, et al

IBM’s newly revealed 50-Qubit Quantum Processer …,  Softcares blog post

Blockchain, open source and trusted data lead to better SDG impacts

Read an article today in Bitcoin magazine IXO Foundation: A blockchain based response to UN call for [better] data which discusses how the UN can use blockchains to improve their development projects.

The UN introduced the 17 Global Goals for Sustainable Development (SDG) to be achieved in the world by 2030. The previous 8 Millennial Development Goals (MDG) expire this year.

Although significant progress has been made on the MDGs, one ongoing determent to  MDG attainment has been that progress has been very uneven, “with the poorest and economically disadvantaged often bypassed”.  (See WEF, What are Sustainable Development Goals).

Throughout the UN 17 SDG, the underlying objective is to end global poverty  in a sustainable way.

Impact claims

In the past organizations performing services for the UN under the MDG mandate, indicated they were performing work toward the goals by stating, for example, that they planted 1K acres of trees, taught 2K underage children or distributed 20 tons of food aid.

The problem with such organizational claims is they were left mostly unverified. So the UN, NGOs and other charities funding these projects were dependent on trusting the delivering organization to tell the truth about what they were doing on the ground.

However, impact claims such as these can be independently validated and by doing so the UN and other funding agencies can determine if their money is being spent properly.

Proving impact

Proofs of Impact Claims can be done by an automated bot, an independent evaluator or some combination of the two . For instance, a bot could be used to analyze periodic satellite imagery to determine whether 1K acres of trees were actually planted or not; an independent evaluator can determine if 2K students are attending class or not, and both bots and evaluators can determine if 20 tons of food aid has been distributed or not.

Such Proofs of Impact Claims then become a important check on what organizations performing services are actually doing.  With over $1T spent every year on UN’s SDG activities, understanding which organizations actually perform the work and which don’t is a major step towards optimizing the SDG process. But for Impact Claims and Proofs of Impact Claims to provide such feedback but they must be adequately traced back to identified parties, certified as trustworthy and be widely available.

The ixo Foundation

The ixo Foundation is using open source, smart contract blockchains, personalized data privacy, and other technologies in the ixo Protocol for UN and other organizations to use to manage and provide trustworthy data on SDG projects from start to completion.

Trustworthy data seems a great application for blockchain technology. Blockchains have a number of features used to create trusted data:

  1. Any impact claim and proofs of impacts become inherently immutable, once entered into a blockchain.
  2. All parties to a project, funders, services and evaluators can be clearly identified and traced using the blockchain public key infrastructure.
  3. Any data can be stored in a blockchain. So, any satellite imagery used, the automated analysis bot/program used, as well as any derived analysis result could all be stored in an intelligent blockchain.
  4. Blockchain data is inherently widely available and distributed, in fact, blockchain data needs to be widely distributed in order to work properly.

 

The ixo Protocol

The ixo Protocol is a method to manage (SDG) Impact projects. It starts with 3 main participants: funding agencies, service agents and evaluation agents.

  • Funding agencies create and digitally sign new Impact Projects with pre-defined criteria to identify appropriate service  agencies which can do the work of the project and evaluation agencies which can evaluate the work being performed. Funding agencies also identify Impact Claim Template(s) for the project which identify standard ways to assess whether the project is being performed properly used by service agencies doing the work. Funding agencies also specify the evaluation criteria used by evaluation agencies to validate claims.
  • Service agencies select among the open Impact Projects whichever ones they want to perform.  As the service agencies perform the work, impact claims are created according to templates defined by funders, digitally signed, recorded and collected into an Impact Claim Set underthe IXO protocol.  For example Impact Claims could be barcode scans off of food being distributed which are digitally signed by the servicing agent and agency. Impact claims can be constructed to not hold personal identification data but still cryptographically identify the appropriate parties performing the work.
  • Evaluation agencies then take the impact claim set and perform the  evaluation process as specified by funding agencies. The evaluation insures that the Impact Claims reflect that the work is being done correctly and that the Impact Project is being executed properly. Impact claim evaluations are also digitally signed by the evaluation agency and agent(s), recorded and widely distributed.

The Impact Project definition, Impact Claim Templates, Impact Claim sets, Impact Claim Evaluations are all available worldwide, in an Global Impact Ledger and accessible to any and all funding agencies, service agencies and evaluation agencies.  At project completion, funding agencies should now have a granular record of all claims made by service agency’s agents for the project and what the evaluation agency says was actually done or not.

Such information can then be used to guide the next round of Impact Project awards to further advance the UN SDGs.

Ambly project

The Ambly Project is using the ixo Protocol to supply childhood education to underprivileged children in South Africa.

It combines mobile apps with blockchain smart contracts to replace an existing paper based school attendance system.

The mobile app is used to record attendance each day which creates an impact claim which can then be validated by evaluators to insure children are being educated and properly attending class.

~~~

Blockchains have the potential to revolutionize financial services, provide supply chain provenance (e.g., diamonds with Blockchains at IBM), validate company to company contracts (Ethereum enters the enterprise) and now improve UN SDG attainment.

Welcome to the new blockchain world.

Photo Credit(s): What are Sustainable Development Goals, World Economic Forum;

IXO Foundation website

Ambly Project webpage

Magnonics for configurable electronics

Read an article today in ScienceDaily on [a] New way to write magnetic info … that discusses research done at Imperial College Of London that used a magnetic force microscope (small magnetic probe) to write magnetic fields onto a dense array of nanowires.

Frustrated metamaterials needed

The original research is written up in a Nature article Realization of ground state in artificial kagome spin ice via topological defect driven magnetic writing  (paywall). Unclear what that means but the paper abstract discusses geometrically frustrated magnetic metamaterials.  This is where the physical size or geometrical properties of the materials at the nanometer scale restricts or limits the magnetic states that material can exhibit.

Magnetic storage deals with magnetic material but there are a number of unique interactions of magnetic material when in close (nm) proximity to one another and the way nanowire geometrically frustrated magnetic metamaterials can be magnetized to different magnetic moments which can be exploited for other uses.  These interactions and magnetic moments can be combined to provide electronic circuitry and data storage.

I believe the research provides a proof point that such materials can be written, in close proximity to one another using a magnetic force microscope.

Why it’s important

The key is the potential to create  magnonic circuitry based on the pattern of moments writen into an array of nanowires. In doing so, one can fabricate any electrical circuit. It’s almost like photolithography but without fabs, chemicals, or laser scanners.

At first I thought this could be a denser storage device, but the potential is much greater if electronic circuitry could be constructed without having to fabricate semiconductors. It would seem ideal for testing out circuitry before manufacturing. And ultimately if it could be scaled up, the manufacture/fabrication of electronic circuitry itself could be done using these techniques.

Speed, endurance, write limits?

There was no information in the public article about the speed of writing the “frustrated magnetic metamaterials”. But an atomic force microscope can scan 150×150 micrometers in several minutes. If we assume that a typical chip size today is 150×150 mm, then this would take 1E6 times several minutes, or ~2K days. With multiple scanning force microscopes operating concurrently we could cut this down by a factor of 10 or 100 and maybe someday 1000. 2 days to write any electronic circuit on the order of todays 23nm devices with nanowires and magnetic force microscopes would be a significant advance

Also there was no mention of endurance, write limits or other characteristics we have learned to love with Flash storage. But the assumption is that it can be written multiple times and that the pattern stays around for some amount of time.

How magnetics generate electronic circuits

Neither Wikipedia page, the public article or the paywall articles’ abstract describes how Magnonics can supply electronic circuitry. However both the abstract and the public article discuss applications for this new technology in hardware based neural networks using arrays of densely packed nanowires.

Presumably, by writing different magnetic patterns in these nanowire metamaterials, such patterns can be used to simulate hardware connected neurons. This means that the magnetic information can be overwritten because it can be trained. Also, such magnetic circuits can be constructed to: a) can create different path for electrons to flow through the material; b) can restrict or enhance this electronic flow, and c) can integrate across a number of inputs and determine how electronic flow will proceed from a simulated neuron.

If magnonics can do all that,  it’s very similar to electronic gates today in CPU, GPUs and other electronic circuitry. Maybe it cannot simulate every gate or electronic device that’s found in todays CPUs but it’s a step in the right direction. And magnonics is relatively new. Silicon transistors are over 70 years old and the integrated circuit is almost 60 years old. So in time, magnonics could very well become the next generation of chip technology.

Writing speed is a problem. Maybe if they spun the nanowire array around the magnetic force microscope…

Comments?

Photo Credits:  Real space observation of emergent magnetic monopoles … Nature article

Realization of ground state in artificial kagome spin ice via topological defect driven magnetic writing, Nature article

 

Scratch file use in HPC @ORNL, a statistical analysis

Attended SC17 (Supercomputing Conference) this past week and I received a copy of the accompanying research proceedings. There are a number of interesting papers in the research and I came across one, Scientific User Behavior and Data Sharing Trends in a Peta Scale File System by Seung-Hwan Lim, et al from Oak Ridge National Laboratory (ORNL) and the use of files at the Oak Ridge Leadership Computing Facility (OLCF) which was very interesting.

The paper statistically describes the use of a Scratch files in a multi PB file system (Lustre) at OLCF from January 2015 to August 2016. The OLCF supports over 32PB of storage, has a peak aggregate of over 1TB/s and Spider II (current Lustre file system) consists of 288 Lustre Object Storage Servers, all interconnected and connected to all the supercomputing cluster of  servers via an InfiniBand network. Spider II supports all scratch storage requirements for active/queued jobs for the Titan (#4 in Top 500 [super computer clusters worldwide] list) and other clusters at ORNL.

ORNL uses an HPSS (High Performance Storage System) archive for permanent storage but uses the Spider II file system for all scratch files generated and used during supercomputing applications.  ORNL is expecting Spider III (2018-2023) to host 10 billion files.

Scratch files are purged from Spider II after 90 days of no access.The paper is based on metadata analysis captured during scratch purging process for 500 days of access.

The paper displays a number of statistics and metrics on the use of Spider II:

  • Less than 3% of projects have a directory depth >15, the maximum directory depth was recorded at 432, with most projects having a shallow (<10) directory depth.
  • A project typically has 10X the files that a specific researcher has and a median file count/researcher is 2000 files with a median project having 20,000 files.
  • Storage system performance is actively managed by many projects. For instance, 20 out of 35 science domains manually managed their Lustre cluster configuration to improve throughput.
  • File count continues to grow and reached a peak of 1B files during the time being analyzed.
  • On average only 3% of files were accessed readonly, 10% of files updated (read-write) and 76% of files were untouched during a week period. However, median and maximum file age was 138 and 214 days respectively, which means that these scratch files can continue to be accessed over the course of 200+ days.

There was more information in the paper but one item missing is statistics on scratch file size distribution a concern.

Nonetheless, in paints an interesting picture of scratch file use in HPC application/supercluster environments today.

Comments?

Crowdresearch, crowdsourced academic research

Read an article in Stanford Research, Crowdsourced research gives experience to global participants that discussed an activity in Stanford and other top tier research institutions to try to get global participation in academic research. The process is discussed more fully in a scientific paper (PDF here) by researchers from Stanford, MIT Media Lab, Cornell Tech and UC Santa Cruz.

They chose three projects:

  • A HCI (human computer interaction) project to design, engineer and build a new paid crowd sourcing marketplace (like Amazon’s Mechanical Turk).
  • A visual image recognition project to improve on current visual classification techniques/algorithms.
  • A data science project to design and build the world’s largest wisdom of the crowds experiment.

Why crowdsource academic research?

The intent of crowdsourced research is to provide top tier academic research experience to persons which have no access to top research organizations.

Participating universities obtain more technically diverse researchers, larger research teams, larger research projects, and a geographically dispersed research community.

Collaborators win valuable academic research experience, research community contacts, and potential authorship of research papers as well as potential recommendation letters (for future work or academic placement),

How does crowdresearch work?

It’s almost an open source and agile development applied to academic research. The work week starts with the principal investigator (PI) and research assistants (RAs) going over last week’s milestone deliveries to see which to pursue further next week. The crowdresearch uses a REDDIT like posting and up/down voting to determine which milestone deliverables are most important. The PI and RAs review this prioritized list to select a few to continue to investigate over the next week.

The PI holds an hour long video conference (using Google Hangouts On Air Youtube live stream service). On the conference call all collaborators can view the stream but only a select few are on camera. The PI and the researchers responsible for the important milestone research of the past week discuss their findings and the rest of the collaborators on the team can participate over Slack. The video conference is archived and available  to be watched offline.

At the end of the meeting, the PI identifies next weeks milestones and potentially directly responsible investigators (DRIs) to work on them.

The DRIs and other collaborators choose how to apportion the work for the next week and work commences. Collaboration can be fostered and monitored via Slack and if necessary, more Google live stream meetings.

If collaborators need help understanding some technology, technique, or too, the PI, RAs or DRIs can provide a mini video course on the topic or can point to other information used to get the researchers up to speed. Collaborators can ask questions and receive answers through Slack.

When it’s time to write the paper, they used Google Docs with change tracking to manage the writing process.

The team also maintained a Wiki on the overall project to help new and current members get up to speed on what’s going on. The Wiki would also list the week’s milestones, video archives, project history/information, milestone deliverables, etc.

At the end of the week, researchers and DRIs would supply a mini post to describe their work and link to their milestone deliverables so that everyone could review their results.

Who gets credit for crowdresearch?

Each week, everyone on the project is allocated 100 credits and apportions these credits to other participants the weeks activities. The credits are  used to drive a page-rank credit assignment algorithm to determine an aggregate credit score for each researcher on the project.

Check out the paper linked above for more information on the credit algorithm. They tried to defeat (credit) link rings and other obvious approaches to stealing credit.

At the end of the project, the PI, DRIs and RAs determine a credit clip level for paper authorship. Paper authors are listed in credit order and the remaining, non-author collaborators are listed in an acknowledgements section of the paper.

The PIs can also use the credit level to determine how much of a recommendation letter to provide for researchers

Tools for crowdresearch

The tools needed to collaborate on crowdresearch are cheap and readily available to anyone.

  • Google Docs, Hangouts, Gmail are all freely available, although you may need to purchase more Drive space to host the work on the project.
  • Wiki software is freely available as well from multiple sources including Wikipedia (MediaWiki).
  • Slack is readily available for a low cost, but other open source alternatives exist, if that’s a problem.
  • Github code repository is also readily available for a reasonable cost but  there may be alternatives that use Google Drive storage for the repo.
  • Web hosting is needed to host the online Wiki, media and other assets.

Initial projects were chosen in computer science, so outside of the above tools, they could depend on open source. Other projects will need to consider how much experimental apparatus, how to fund these apparatus purchases, and how a global researchers can best make use of these.

My crowdresearch projects

Some potential commercial crowdresearch projects where we could use aggregate credit score and perhaps other measures of participation to apportion revenue, if any.

  • NVMe storage system using a light weight storage server supporting NVMe over fabric access to hybrid NVMe SSD – capacity disk storage.
  • Proof of Stake (PoS) Ethereum pooling software using Linux servers to create a pool for PoS ETH mining.
  • Bipedal, dual armed, dual handed, five-fingered assisted care robot to supply assistance and care to elders and disabled people throughout the world.

Non-commercial projects, where we would use aggregate credit score to apportion attribution and any potential remuneration.

  • A fully (100%?) mechanical rover able to survive, rove around, perform  scientific analysis, receive/transmit data and possibly, effect repairs from within extreme environments such as the surface of Venus, Jupiter and Chernoble/Fukishima Daiichi reactor cores.
  • Zero propellent interplanetary tug able to rapidly transport rovers, satellites, probes, etc. to any place within the solar system and deploy theme properly.
  • A Venusian manned base habitat including the design, build process and ongoing support for the initial habitat and any expansion over time, such that the habitat can last 25 years.

Any collaborators across the world, interested in collaborating on any of these projects, do let me know, here via comments. Please supply some way to contact you and any skills you’re interested in developing or already have that can help the project(s).

I would be glad to take on PI role for the most popular project(s), if I get sufficient response (no idea what this would be). And  I’d be happy to purchase the Drive, GitHub, Slack and web hosting accounts needed to startup and continue to fruition the most popular project(s). And if there’s any, more domain experienced PIs interested in taking any of these projects do let me know.  

Comments?

Picture Credit(s): Crowd by Espen Sundve;

Videoblogger Video Conference by Markus Sandy;

Researchers Night 2014 by Department of Computer Science, NTNU;

A steampunk Venusian rover

Read an article last week in theEngineer on “Designing a mechanical rover to explore … Venus“, on a group at JPL, led by Jonathon Sauder who are working on a mechanical rover to study Venus.

Venus has a temperature of ~470c, hot enough to melt lead, which will fry most electronics in seconds. Moreover, the Venusian surface is under a lot of pressure, roughly equivalent to a mile under water or ~160X the air pressure at Earth’s surface (from NASA Venus in depth). Extreme conditions for any rover.

Going mobile

Sauder and his team were brainstorming mechanical rovers, that operated similar to Theo Jansen’s StrandBeest which walks using wind energy alone. (Checkout the video of the BEEST walking).

Jansen had told Sauder’s team that his devices work much better on smooth surfaces and that uneven, beach like surfaces presented problems.

So, Sauder’s team started looking at using something with tracks instead of legs/feet, sort of like a World War 1 tank. That could operate upside down as well as rightside up.

Rather than sails (as the StrandBeest), they plan to use multiple vertical axis wind turbines, called Sarvonius rotors, located inside the tank to create energy and store that energy in springs for future use.

Getting data

They’re not planning to ditch electronics all together but need to minimize the rovers reliance on electronics.

There are some electronics that can operate at 450C based on silicon carbide and gallium carbide which have a very low level of integration at this time, just a 100 transistors per chip.  And they could use this to add electronic processing and control to their mechanical rover.

Solar panels can supply electricity to the high temperature electronics and can operate at 450C.

But to get information off the rover and back to the Earth, they plan to use a highly radio reflective spot on the rover and a mechanical shutter mechanism. The mechanism can be closed and opened and together with an orbiting satellite generating radio pulses and recording the rover’s reflectivity or not, send Morse code from rover to satellite. The orbiting satellite could record this information and then transmit it to Earth.

The rover will make use of simple chemical reactions to measure soil, rock and atmospheric chemistry. Soil and rocks suitable for analysis can be scooped up, drilled out and moved to the analysis chamber(s) via mechanical devices. Wind speed and direction can be sensed with simple mechanical devices.

In order to avoid obstacles wihile roving around the planet, they  plan to use a mechanical probe out othe front (and back?) of the rover with control systems attached to this to avoid obstacles. This way the rover can move around more of the planets surface.

Such a mechanical rover with high temperature electronics might also be suitable for other worlds in the solar system, Mercury for sure but moons of the Jovian planets, also have extreme pressure environments.

And such a electrical-mechanical rover also might work great to probe volcano’s on earth, although the temperatures are 700 to 1200C, ~2 to 3X Venus. Maybe such a rover could be used in highly radioactive environments to record information and send this back to personnel outside the environment or even effect some preprogrammed repairs. Ocean vents could also be another potential place where such a rover might work well.

Possible improvements

Mechanical probes would need to be moved vertically and swing horizontally to be effective and would necessarily have to poke outside the tanks envelope to read obstacles ahead.

Sonar could work better. Sounds or clicks could be produced mechanically and their reflections could be also received mechanically (a mic is just a mechanical transducer). At the pressures on Venus, sound should travel far.

Morse code was designed to efficiently send alpha-numerics and not much else. It would seem that another codec could be designed to send scientific information faster. And if one mechanical spot is good, multiple spots would be better assuming the satellite could detect multiple radio reflective spots located in close proximity to one another on the rover.

Radio works but why not use infrared. If there were some way to read an infrared signal from the probe, it could present more information per pass.

For instance, an infrared photo of the rover’s bottom or top, using with a flat surface, could encode information in cold and hot spots located across that surface.

This could work at whatever infrared resolution available from the satellite orbiting overhead and would send much more information per orbital pass.

In fact, such an infrared surface readout might allow the rover to send B&W pictures up to the satellite. Sonar could provide a mechanism to record a (sound) picture of the environment being scanned. The infrared information could be encoded across the surface via pipes of cool and hot liquids, sort of like core memory of old.

What about steam power. With 450C there ought to be more than enough heat to boil some liquid and have it cool via expansion. Having cool liquid could be used to cool electronics, chemical and solar devices.  And as the high temperatures on Venus seem constant, steam power and liquid cooling would be available all the time and eliminating any need for springs to hold energy.

And the cooling liquid from steam engines could be used to support an infrared signaling mechanism.

Still not sure why we need any electronics. A suitably configured, shrunken, analytical engine could provide the rudimentary information processing necessary to work the shutter or other transmitter mechanisms, initiate, readout and store mechanical/chemical/sonar sensors and control the other items on the rover.

And with a suitably complex analytical engine there might be some way to mechanically program it with various modes using something like punched tape or cards. Such a device could be used to hold and load information for separate programs in minimal space and could also be used to store information for later transmission, supplying a 100% mechanical storage device.

Going 100% mechanical could also lead to a potentially longer lived rover than something using some electronics and mostly mechanical devices on a planet like Venus. Mechanical devices can fail, but their failure modes are normally less catastrophic, well understood. Perhaps with sufficient mechanical redundancy and concern for tribology, such a 100% mechanical rover could last an awful long time, without any maintenance, e.g., like swiss watches.

Comments?

Photo Credit(s): World War One tank – mark 1 by Photos of the Past

Vintage Philmor morse code practice … by Joe Haupt

Accompanied by an instructor… by vy pham;

Core memory more detail by Kenneth Moore;

Model of the Analytical Engine By Bruno Barral (ByB), CC BY-SA 2.5;

Punched tape by Rositslav Lisovy

Steam locomotives by Jim Phillips

Disk rulz, at least for now

Last week WDC announced their next generation technology for hard drives, MAMR or Microwave Assisted Magnetic Recording. This is in contrast to HAMR, Heat (laser) Assisted Magnetic Recording. Both techniques add energy so that data can be written as smaller bits on a track.

Disk density drivers

Current hard drive technology uses PMR or Perpendicular Magnetic Recording with or without SMR (Shingled Magnetic Recording) and TDMR (Two Dimensional Magnetic Recording), both of which we have discussed before in prior posts.

The problem with PMR-SMR-TDMR is that the max achievable disk density is starting to flat line and approaching the “WriteAbility limit” of the head-media combination.

That is even with TDMR, SMR and PMR heads, the highest density that can be achieved is ~1.1Tb/sq.in. The Writeability limit for the current PMR head-media technology is ~1.4Tb/sq.in. As a result most disk density increases over the past years has been accomplished by adding platters-heads to hard drives.

MAMR and HAMR both seem able to get disk drives to >4.0Tb/sq.in. densities by adding energy to the magnetic recording process, which allows the drive to record more data in the same (grain) area.

There are two factors which drive disk drive density (Tb/sq.in.): Bits per inch (BPI) and Tracks per inch (TPI). Both SMR and TDMR were techniques to add more TPI.

I believe MAMR and HAMR increase BPI beyond whats available today by writing data on smaller magnetic grain sizes (pitch in chart) and thus more bits in the same area. At 7nm grain sizes or below PMR becomes unstable, but HAMR and MAMR can record on grain sizes of 4.5nm which would equate to >4.5Tb/sq.in.

HAMR hurdles

It turns out that HAMR as it uses heat to add energy, heats the media drives to much higher temperatures than what’s normal for a disk drive, something like 400C-700C.  Normal operating temperatures for disk drives is  ~50C.  HAMR heat levels will play havoc with drive reliability. The view from WDC is that HAMR has 100X worse reliability than MAMR.

In order to generate that much heat, HAMR needs a laser to expose the area to be written. Of course the laser has to be in the head to be effective. Having to add a laser and optics will increase the cost of the head, increase the steps to manufacture the head, and require new suppliers/sourcing organizations to supply the componentry.

HAMR also requires a different media substrate. Unclear why, but HAMR seems to require a glass substrate, the magnetic media (many layers) is  deposited ontop of the glass substrate. This requires a new media manufacturing line, probably new suppliers and getting glass to disk drive (flatness-bumpiness, rotational integrity, vibrational integrity) specifications will take time.

Probably more than a half dozen more issues with having laser light inside a hard disk drive but suffice it to say that HAMR was going to be a very difficult transition to perform right and continue to provide today’s drive reliability levels.

MAMR merits

MAMR uses microwaves to add energy to the spot being recorded. The microwaves are generated by a Spin Torque Oscilator, (STO), which is a solid state device, compatible with CMOS fabrication techniques. This means that the MAMR head assembly (PMR & STO) can be fabricated on current head lines and within current head mechanisms.

MAMR doesn’t add heat to the recording area, it uses microwaves to add energy. As such, there’s no temperature change in MAMR recording which means the reliability of MAMR disk drives should be about the same as todays disk drives.

MAMR uses todays aluminum substrates. So, current media manufacturing lines and suppliers can be used and media specifications shouldn’t have to change much (?) to support MAMR.

MAMR has just about the same max recording density as HAMR, so there’s no other benefit to going to HAMR, if MAMR works as expected.

WDC’s technology timeline

WDC says they will have sample MAMR drives out next year and production drives out in 2019. They also predict an enterprise 40TB MAMR drive by 2025. They have high confidence in this schedule because MAMR’s compatabilitiy with  current drive media and head manufacturing processes.

WDC discussed their IP position on HAMR and MAMR. They have 400+ issued HAMR patents with another 100+ pending and 75 issued MAMR patents with 46 more pending. Quantity doesn’t necessarily equate to quality, but their current IP position on both MAMR and HAMR looks solid.

WDC believes that by 2020, ~90% of enterprise data will be stored on hard drives. However, this is predicated on achieving a continuing, 10X cost differential between disk drives and (QLC 3D) flash.

What comes after MAMR is subject of much speculation. I’ve written on one alternative which uses liquid Nitrogen temperatures with molecular magnets, I called CAMR (cold assisted magnetic recording) but it’s way to early to tell.

And we have yet to hear from the other big disk drive leader, Seagate. It will be interesting to hear whether they follow WDC’s lead to MAMR, stick with HAMR, or go off in a different direction.

Comments?

 

Photo Credit(s): WDC presentation

A tale of two storage companies – NetApp and Vantara (HDS-Insight Grp-Pentaho)

It was the worst of times. The industry changes had been gathering for a decade almost and by this time were starting to hurt.

The cloud was taking over all new business and some of the old. Flash’s performance was making high performance easy and reducing storage requirements commensurately. Software defined was displacing low and midrange storage, which was fine for margins but injurious to revenues.

Both companies had user events in Vegas the last month, NetApp Insight 2017 last week and Hitachi NEXT2017 conference two weeks ago.

As both companies respond to industry trends, they provide an interesting comparison to watch companies in transition.

Company role

  • NetApp’s underlying theme is to change the world with data and they want to change to help companies do this.
  • Vantara’s philosophy is data and processing is ultimately moving into the Internet of things (IoT) and they want to be wherever the data takes them.

Hitachi Vantara is a brand new company that combines Hitachi Data Systems, Hitachi Insight Group and Pentaho (an analytics acquisition) into one organization to go after the IoT market. Pentaho will continue as a separate brand/subsidiary, but HDS and Insight Group cease to exist as separate companies/subsidiaries and are now inside Vantara.

NetApp sees transitions occurring in the way IT conducts business but ultimately, a continuing and ongoing role for IT. NetApp’s ultimate role is as a data service provider to IT.

Customer problem

  • Vantara believes the main customer issue is the need to digitize the business. Because competition is emerging everywhere, the only way for a company to succeed against this interminable onslaught is to digitize everything. That is digitize your manufacturing/service production, sales, marketing, maintenance, any and all customer touch points, across your whole value chain and do it as rapidly as possible. If you don’t your competition will.
  • NetApp sees customers today have three potential concerns: 1) how to modernize current infrastructure; 2) how to take advantage of (hybrid) cloud; and 3) how to build out the next generation data center. Modernization is needed to free capital and expense from traditional IT for use in Hybrid cloud and next generation data centers. Most organizations have all three going on concurrently.

Vantara sees the threat of startups, regional operators and more advanced digitized competitors as existential for today’s companies. The only way to keep your business alive under these onslaughts is to optimize your value delivery. And to do that, you have to digitize every step in that path.

NetApp views the threat to IT as originating from LoB/shadow IT originating applications born and grown in the cloud or other groups creating next gen applications using capabilities outside of IT.

Product direction

  • NetApp is looking mostly towards the cloud. At their conference they announced a new Azure NFS service powered by NetApp. They already had Cloud ONTAP and NPS, both current cloud offerings, a software defined storage in the cloud and a co-lo hardware offering directly attached to public cloud (Azure & AWS), respectively.
  • Vantara is looking towards IoT. At their conference they announced Lumada 2.0, an Industrial IoT (IIoT) product framework using plenty of Hitachi software functionality and intended to bring data and analytics under one software umbrella.

NetApp is following a path laid down years past when they devised the data fabric. Now, they are integrating and implementing data fabric across their whole product line. With the ultimate goal that wherever your data goes, the data fabric will be there to help you with it.

Vantara is broadening their focus, from IT products and solutions to IoT. It’s not so much an abandoning present day IT, as looking forward to the day where present day IT is just one cog in an ever expanding, completely integrated digital entity which the new organization becomes.

They both had other announcements, NetApp announced ONTAP 9.3, Active IQ (AI applied to predictive service) and FlexPod SF ([H]CI with SolidFire storage) and Vantara announced a new IoT turnkey appliance running Lumada and a smart data center (IoT) solution.

Who’s right?

They both are.

Digitization is the future, the sooner organizations realize and embrace this, the better for their long term health. Digitization will happen with or without organizations and when it does, it will result in a significant re-ordering of today’s competitive landscape. IoT is one component of organizational digitization, specifically outside of IT data centers, but using IT resources.

In the mean time, IT must become more effective and efficient. This means it has to modernize to free up resources to support (hybrid) cloud applications and supply the infrastructure needed for next gen applications.

One could argue that Vantara is positioning themselves for the long term and NetApp is positioning themselves for the short term. But that denies the possibility that IT will have a role in digitization. In the end both are correct and both can succeed if they deliver on their promise.

Comments?